Ischemia induces different levels of hypoxia inducible factor-1a protein expression in interneurons and pyramidal neurons
نویسندگان
چکیده
Introduction: Pyramidal (glutamatergic) neurons and interneurons are morphologically and functionally well defined in the central nervous system. Although it is known that glutamatergic neurons undergo immediate cell death whereas interneurons are insensitive or survive longer during cerebral ischemia, the protection mechanisms responsible for this interneuronal survival are not well understood. Hypoxia inducible factor-1 (HIF-1) plays an important role in protecting neurons from hypoxic/ischemic insults. Here, we studied the expression of HIF-1α, the regulatable subunit of HIF-1, in the different neuronal phenotypes under in vitro and in vivo ischemia. Results: In a primary cortical culture, HIF-1α expression was observed in neuronal somata after hypoxia (1% oxygen) in the presence of 5 or 25 mM glucose but not under normoxia (21% oxygen). Interestingly, only certain MAP2-positive neurons containing round somata (interneuron-like morphology) co-localized with HIF-1α staining. Other neurons such as pyramidal-like neurons showed no expression of HIF-1α under either normoxia or hypoxia. The HIF-1α positive neurons were GAD65/67 positive, confirming that they were interneuron-type cells. The HIF-1α expressing GAD65/67-positive neurons also possessed high levels of glutathione. We further demonstrated that ischemia induced significant HIF-1α expression in interneurons but not in pyramidal neurons in a rat model of middle cerebral artery occlusion. Conclusion: These results suggest that HIF-1α protein expression induced by ischemia is neuron-type specific and that this specificity may be related to the intracellular level of glutathione (GSH).
منابع مشابه
Ischemia induces different levels of hypoxia inducible factor-1α protein expression in interneurons and pyramidal neurons
INTRODUCTION Pyramidal (glutamatergic) neurons and interneurons are morphologically and functionally well defined in the central nervous system. Although it is known that glutamatergic neurons undergo immediate cell death whereas interneurons are insensitive or survive longer during cerebral ischemia, the protection mechanisms responsible for this interneuronal survival are not well understood....
متن کاملIschemic insults promote epigenetic reprogramming of mu opioid receptor expression in hippocampal neurons.
Transient global ischemia is a neuronal insult that induces delayed, selective death of hippocampal CA1 pyramidal neurons. A mechanism underlying ischemia-induced cell death is activation of the gene silencing transcription factor REST (repressor element-1 silencing transcription factor)/NRSF (neuron-restrictive silencing factor) and REST-dependent suppression of the AMPA receptor subunit GluR2...
متن کاملThe Proinflammatory Cytokine Interleukin 1B and Hypoxia Cooperatively Induce the Expression of Adrenomedullin in Ovarian Carcinoma Cells through Hypoxia Inducible Factor 1 Activation
Adrenomedullin (ADM) is a potent hypotensive peptide produced by macrophages and endothelial cells during ischemia and sepsis. The molecular mechanisms that control ADM gene expression in tumor cells are still poorly defined. It is known, however, that hypoxia potently increases ADM expression by activation of the transcription factor complex hypoxia inducible factor 1 (HIF-1). Proinflammatory ...
متن کاملInvestigation of the effect of sublethal concentrations of endosulfan on gene expression of hypoxia-inducible factors (HIF-1 α and HIF-2 α) and vascular endothelial growth factor (VEGF) in the Persian sturgeon fingerlings (Acipenser persicus)
In this study, the effects of sublethal concentrations of the Endosulfan on gene expression of hypoxia-inducible factor (HIF-1 α, HIF-2 α) and vascular endothelial growth factor (VEGF) in the gill tissue of Persian sturgeon fingerling (Acipenser persicus) were studied. A total of 360 sturgeons (average weight of 2 ± 0.12 g) exposed to concentrations of 10, 20 and 40 micrograms per liter and VEG...
متن کاملTime course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کامل